Jude Savarraj, PhD: Using Machine Learning to Predict DCI and Other Outcomes

December 1, 2020
Jude Savarraj, PhD

The research scientist from the University of Texas Medical School at Houston discussed the potential of machine learning to predict outcomes before symptoms arise.

“There's been efforts to predict DCI sooner, so there could be some prophylactic intervention. Machine learning is really good at predicting stuff before it happens. So that's when the idea struck me. Maybe we should be trying to use machine learning algorithms to see if we can predict this complication before symptoms arise.”

Jude Savarraj, PhD, research scientist, department of neurosurgery, University of Texas Medical School at Houston, and colleagues recently published a study that suggests machine learning (ML) models used to predict delayed cerebral ischemia (DCI) and functional outcomes significantly outperformed standard models (SMs) when used in subarachnoid hemorrhage (SAH) care. 

The ML model outperformed the SM in area under the curve (AUC) by 0.20 (95% CI; -0.02 to 0.4) for DCI, 0.07 (standard deviation [SD], 0.03; 95% CI, 0.0018–0.14) for discharge outcomes, and by 0.14 (95% CI, 0.03–0.24) for 3-month outcomes. Additionally, ML models matched physician performance in predicting 3-month outcomes.

The ML models initially only used routine variables included in a patients’ electronic medical record (EMR), but Savarraj and colleagues found that the ML models performed even better when they also assessed clinician-determined Hunt-Hess Scale score in addition to standard EMR variables (AUC, 0.85; SD, 0.05; 95% CI, 0.75–0.92). Only using EMR data yielded an AUC of 0.81 (SD, 0.05; 95% CI, 0.71–0.89; P < .05).

In this interview, NeurologyLive spoke with Savarraj to learn more about the use of machine learning and synergistic opportunities to combine human and computer skill.

REFERENCE
Savarraj JP, Hergenroeder GW, Zhu L, Chang T, et al. Machine learning to predict delayed cerebral ischemia and outcomes in subarachnoid hemorrhage. Neurology. Published online November 12, 2020. doi: 10.1212/WNL.0000000000011211