Therapeutic Potential of Targeting SARM1 in ALS: Anna Underhill, BS
The postdoctoral researcher at King’s College London discussed the mechanistic role SARM1 gene mutations play in the development and progression of ALS. [WATCH TIME: 3 minutes]
WATCH TIME: 3 minutes
“We know that knocking out Sarm1 in mouse models protects the neurons, and SARM1 could potentially be targeted for treating ALS. SARM1 is really interesting because of its role downstream in the pathway for Wallerian degeneration.”
Many diseases, including amyotrophic lateral sclerosis (ALS), are linked to errors, or mutations, in genes. About two-thirds of individuals with familial ALS and 10% of people with sporadic or singleton ALS have a known ALS-associated genetic mutation. There are several well-known ALS genes, including C9orf72, SOD1, NEK1, TDP43, and fused in sarcoma (FUS). Another gene, SARM1, and the protein it produces, have shown to cause death of nerve fibers and their supporting neurons.
Researchers have also found that SARM1 mutations thought to promote neuron death are present in ALS.
To learn more about the initiative, including the specific potential SARM1 has, NeurologyLive® sat down with study investigator Anna Underhill, BS. Underhill, a postdoctoral researcher at King’s College London, provided context on what had previously been researched, the downstream effects from this gene, and why it holds potential as a therapeutic target.
Newsletter
Keep your finger on the pulse of neurology—subscribe to NeurologyLive for expert interviews, new data, and breakthrough treatment updates.
Related Articles
- Current Challenges and New Opportunities Ahead for Women in Neurology
September 15th 2025
- Del-Zota Reverses Duchenne Disease Progression in 1-Year Trial Update
September 15th 2025
- 2025 Women in Neurology Conference: Educating, Mentoring, and Networking
September 15th 2025
- This Week on NeurologyLive® — September 15, 2025
September 15th 2025